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Abstract

A given set of users share the submodular cost of access to a network (or, more generally,

the submodular cost of any idiosyncratic binary good). We compare strategyproof mecha-

nisms that serve the e�cient set of users (but do not necessarily balance the budget) with

those that exactly cover costs (but are not necessarily e�cient). Under the requirements of

individual rationality (guaranteeing voluntary participation) and consumer sovereignty (an

agent will obtain access if his willingness to pay is high enough), we �nd:

i) a unique strategyproof and e�cient mechanism (a variant of the familiar pivotal mech-

anism) dubbed the marginal contribution mechanism (MC)

ii) a whole class of strategyproof and budget-balanced mechanisms, each one correspond-

ing to a certain cost sharing formula; these mechanisms, unlike MC, are immune to manip-

ulations by coalitions

Within the second class, the mechanism associated with the Shapley value cost sharing

formula is characterized by the property that its worst welfare loss is minimal. We compare

the budget imbalances of MC with the welfare losses of the Shapley value mechanism. Ap-

plication of these methods to the case of a tree network without congestion is also discussed.

0Stimulating conversations with Raj Deb, Bhaskar Dutta, Wolfgang Pesendorfer, and William Thomson are
gratefully acknowledged.
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1 The Problem and the Punchline

Sharing the cost of a service jointly produced for a given set of users is one of the most popular

applications of cooperative game theory (e.g., Shubik [1962], Loehman and Whinston [1979],

Stra�n and Heaney [1989]). The standard model has a set N of users who can either have access

to the service or not; if the subset (coalition) S of N receives the service, the cost C(S) must be

shared between the users in S. As the cost function C is not necessarily symmetrical in the di�erent

users, we can think of \service to user i" as an idiosyncratic good di�erent from \service to user

j". One canonical example of such a system, whose terminology we will use throughout the paper

for convenience, is that of providing access to a network, where the network may be distributing

water (Okada et al. [1982]), or telecommunication services (Sharkey [1995]), or multicast messages

(Herzog et al. [1995]), and so on; we discuss this network interpretation more thoroughly in Section

7.

The literature on cost allocation (surveyed, for example, in Young [1985] and Moulin [1988,1995])

mostly addresses the two related questions of fairness (which cost allocations among users are

fair?) and core stability (which cost allocations are not threatened by the secession of a coalition

standing alone to provide its own service?). In this paper, we look at the somewhat di�erent

issue of incentive compatibility; we consider mechanisms that elicit from each user his/her will-

ingness to pay for access to the network, then decide who gets access and how the cost is shared.

Strategyproofness is the minimal level of incentive compatibility we require, and to that end we

focus exclusively on strategyproof mechanisms, where truthful report of one's willingness to pay

is always a dominant strategy. We also discuss another form of incentive compatibility, namely

group strategyproofness (where no coalition of users has an incentive to jointly misreport their

true willingness to pay).

There are other properties, besides incentive compatibility, that such cost allocation mechanisms

should have. In particular, one would naturally like the cost allocations to be e�cient (maximize

the total welfare) and also budget balanced (cover costs exactly). Unfortunately, even in problems

where preferences can be represented by quasi-linear utilities (as we assume in this paper), there are

no strategyproof cost allocation mechanisms that are both budget balanced and e�cient (Green,

Kohlberg, and La�ont [1976]). In this paper we explore the e�ciency/budget-balance trade o�

in the particular problem of access to a network (as described above). We conclude that, in this

context, the strategyproof and budget balanced mechanisms are preferable to strategyproof and

e�cient ones because of their superior incentive compatibility properties and the greater normative

exibility they o�er the mechanism designer. Accordingly, dropping the e�ciency requirement is

potentially more useful than dropping budget balance in the access charge problem. Before laying

out our arguments, we describe the kind of context for which a choice between e�ciency and

budget balance makes sense.

A context where strategyproof and e�cient (hence budget-imbalanced) mechanisms are often

proposed (e.g., Green and La�ont [1979]) is when a public authority elicits individual preferences

and implements an allocation with the mandate of maximizing total welfare and the ability to

absorb any de�cit or surplus that may occur during the implementation of the mechanism (the

public authority acts as a banker, covering the de�cit or siphoning o� the surplus without distorting
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the incentives). The corresponding set of strategyproof and e�cient mechanisms under quasilinear

utilities is well known; they are usually called the Clarke-Groves mechanisms (Clarke [1971], Groves

[1973]).

A context where budget balance is inescapable is cooperative production (Israelsen [1980], Roemer

[1986, 1989], Moulin [1987], Moulin and Shenker [1992], Fleurbaey and Maniquet [1994]); the users

of the service are in autarchy, so that covering costs is a feasibility constraint. The corresponding

class of strategyproof (but ine�cient) mechanisms has not been previously characterized in the

literature; our Theorem 1 o�ers such a characterization under a stronger incentive compatibil-

ity requirement than strategyproofness (i.e., ruling out pro�table manipulations by coalitions of

agents; see Section 3).

In many realistic situations, both kinds of mechanisms (e�cient and budget imbalanced; budget

balanced and ine�cient) are in fact available. A subset of members of a club (or a subset of

division managers in a �rm, or any subcoalition in a larger community) want to provide a certain

service, but the service will not be o�ered to the membership at large: e.g., the residents of a

certain neighborhood want to jointly establish a local network of bicycle trails (and the existing

highways prevent the extension of the network beyond this particular neighborhood). This local

project may or may not be allowed to tap into the budget of the larger community; that is to say,

both kinds of mechanisms are conceivable and thus a normative comparison is called for.

We cast the focus of this paper in the above context.1 To support our conclusion that strategyproof

and budget balanced mechanisms are preferable to strategyproof and e�cient ones, we o�er two

characterization results. First, we identify a particular strategyproof and e�cient mechanism

(called the marginal contribution mechanism) and show that it is the only reasonable one in

this class: Proposition 1 in Section 3 (the meaning of reasonableness is given at the beginning

of Section 3). Thus the mechanism designer has no exibility at all once he chooses to impose

the e�ciency requirement; in particular he must treat all agents equally (in the sense that if

two users impose equivalent costs then equal messages must result in equal allocations). Second,

we uncover a rich class of budget balanced and strategyproof mechanisms; each one of them

corresponds (in a manner explained in Section 4) to a particular cost sharing formula satisfying a

certain monotonicity property. This class gives the designer a fair amount of exibility, including

treating equals unequally by means of an asymmetric cost sharing formula (typically, ranking the

agents in an arbitrary yet �xed fashion and charging stand alone cost to the �rst ranked agent

requesting service, incremental cost to the second ranked agent requesting service, and so on)

or treating equals equally by using an equitable formula (e.g., the Shapley value). Moreover,

every mechanism in this class satis�es a (much) stronger incentive compatibility requirement than

strategyproofness called group strategyproofness; they are immune to joint misreports by coalitions

of any size (whereas the marginal contribution mechanism is extremely vulnerable to such moves,

as explained at the end of Section 3). Theorem 1 in Section 4 characterizes the class of reasonable

group strategyproof and budget balanced mechanisms.

Within the above class we single out the one associated with the Shapley value formula, because it

1Yet another context of interest is that of a pro�t maximizing �rm supplying access to the network by means of
a strategyproof pricing mechanism. Although we do not discuss this context, it should be clear from Proposition
1 that a pro�t maximizing �rm will not use a strategyproof and e�cient pricing mechanism.
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generates the smallest potential welfare loss (the smallest deviation from e�ciency): Theorem 2 in

Section 5. Thus the paramount equitable solution of the cost sharing problem { the Shapley value

{ ends up being justi�ed on incentive grounds, without invoking any consideration of equity (not

even equal treatments of equals). In Section 6 we compare the maximal welfare loss of the Shapley

value mechanism with the maximal budget imbalance of the marginal contribution mechanism,

and �nd that neither is systematically larger than the other.

The main restrictive assumption, maintained throughout most of the paper, is that the cost func-

tion C is submodular; that is, the marginal cost C(S [ i) � C(S) of adding user i to the set of

users S is nonincreasing in S (i.e., usage of the network by new agents can only reduce the cost

of including a given agent). Submodular cost functions (also called concave cost functions, as in

Shapley [1971]) have many remarkable properties pertaining to core stability (see, for example,

Moulin [1988] Chapter 5). In the context of access to a network, a very natural family of submod-

ular cost functions arise in tree networks without congestion (Sharkey [1995]). Fix a tree from the

source to all potential users (each user sitting on a node of the tree); a cost is assigned to each

link (or edge) of the tree. The cost of serving any coalition S is simply the sum of the costs of the

links (irrespective of the number of users \downstream" of each link) needed to reach all members

of S. An important recent example of such a problem is the allocation of costs in multicast trans-

missions on the Internet (Herzog et al. [1995]). Section 7 is devoted to the application of our two

outstanding mechanisms to various tree networks.

2 The Model

Given areN , the set of users, and C, the nondecreasing, nonnegative and submodular cost function:

C(;) = 0 ; S � T ) C(S) � C(T )

C(S \ T ) + C(S [ T ) � C(S) + C(T ) for any S; T � N

We denote by ui, ui � 0, the amount user i is willing to pay for access to the service. A revelation

mechanism elicits from each user his/her willingness to pay and, based on these reports, it chooses

who gets access and how the costs are shared.2 We use the vectors x and q to denote the resulting

allocation decisions; xi is the cost share imputed to agent i, and qi describes whether or not agent

i is given access (qi = 0 if agent i is not given access, and qi = 1 if agent i is given access). When

we want to make the utility pro�le dependence of these allocations explicit, we will write q(u) and

x(u) to denote the allocations resulting at a particular pro�le. We assume quasi-linear utilities, so

an agent's utility is simply given by uiqi � xi. We postulate that a \reasonable" mechanism must

satisfy the following three properties:

No Subsidy (NS) The cost shares are nonnegative: xi � 0 for all i.

Voluntary Participation (VP) The welfare level corresponding to no access (qi = 0) at no cost

(xi = 0) is guaranteed to each user if they report truthfully.

2Following established, but somewhat confusing, notational practice, the vector u will denote the reported values
as well as the truthful values. When the two di�er, we will make special note of it.
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Consumer Sovereignty (CS) Every user has a message ui guaranteeing that, regardless of the

other reported values u�i, he/she gets access (qi = 1).

Voluntary participation is the standard individual rationality constraint; user i does not prefer

the \status quo" (qi = xi = 0) allocation to the allocation (qi; xi) assigned by the mechanism. In

view of No Subsidy, this implies that she pays nothing if she gets no service (qi = 0) xi = 0).

Consumer Sovereignty means that by reporting a high enough willingness to pay, any user is

guaranteed to get the service. For instance, in the mechanisms discussed below, reporting any

ui � C(fig) (their stand alone cost) ensures that qi = 1 no matter what the other reported uj
are. Note that we do not require that reporting ui = 0 ensures that qi = 0; as long as xi = 0

we can have qi = 1 even though ui = 0. If C(S) is strictly increasing in S, however, the later

con�guration (ui = 0 but qi = 1) will not happen in any of the mechanisms discussed below.3

The strategyproofness literature for cost sharing problems discusses two classes of mechanisms,

corresponding to the choice between budget balance and e�ciency. The �rst class are often called

the Clarke-Groves (CG) mechanisms (Clarke [1971], Groves [1973]); given the pro�le of individual

reports, such a mechanism computes an e�cient coalition S� and assigns payments xi, i = 1; : : : ; n

to individual users in such a way that truthful reporting of one's willingness to pay is a dominant

strategy for each user. Requiring strategyproofness and e�ciency of S� precludes having a pro�le

of payments that exactly covers the cost of S� for all pro�les (Green, Kohlberg, and La�ont [1976]);

the mechanism may run a de�cit at certain pro�les, namely xN < C(S�), or a surplus at certain

pro�les, namely xN > C(S�), or both, but we know it cannot be budget balanced, xN = C(S�),

at all pro�les.4

In Section 3, we show that there is a unique CG mechanism satisfying NS and VP (Proposition 1),

and that this mechanism satis�es CS as well. Denote by w(S; u) (or simply w(S) if the underlying

utility pro�le is unambiguous) the stand alone surplus of coalition S given the technology C:

w(S; u) = max
T�S

[uT �C(T )] (1)

The unique CG mechanism (meeting NS and VP) works as follows: given the pro�le of reports ui,

i 2 N , compute the largest e�cient coalition S� (i.e., the largest solution of the program w(N;u);

submodularity of C ensures that this largest coalition is well-de�ned). Then set xi = 0 for each

i 62 S� and assign the following payment to each i 2 S�:

xi = ui � ((w(N;u)� w(N � i; u)) (2)

We call it the marginal contribution mechanism because, if given access, agent i's net utility gain

ui�xi is exactly equal to her marginal contribution w(N;u)�w(N�i; u) to the stand alone surplus

function w (and if not given access then her marginal contribution is zero, w(N;u) = w(N� i; u)).

In the case of a symmetric cost function (if all users are equivalent, C(S) depends only upon the

3If ui = 0 but C(S+ i) > C(S� i) for all S � N , then i is not part of the e�cient coalition. In the mechanisms
discussed below, the coalition served is always a subset of the e�cient coalition, so ui = 0) qi = 0 whenever agent
i imposes strictly positive incremental costs.

4We use the standard notation that zS =
P

i2S zi.
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cardinality of S, so C(S) = c(jSj) for some function c(�)) this mechanism charges the marginal

cost c(jS�
j)� c(jS�

j � 1) to all users. While this is quite similar in form to the traditional pivotal

mechanism,5 there is an important di�erence as well; the marginal contribution mechanism never

runs a budget surplus (i.e, it either is budget balanced or runs a budget de�cit), whereas the pivotal

mechanism never runs a budget de�cit (i.e, it either is budget balanced or runs a surplus).6

The second class of strategyproof mechanisms sharing the cost of jointly produced goods, insists on

budget balance at all pro�les but may fail to serve the e�cient coalition of users; that is, it provides

service to a coalition S of users that may not maximize the reported welfare (uS � C(S) may be

less than w(N;u)).7 As we discuss below, the strategyproof and budget balanced mechanisms we

consider are derived from an underlying cost sharing method. A cost sharing method is a formula

� associating to each cost function C and to each coalition S of users an allocation of the total

cost C(S) among these users in the form of nonnegative cost shares �i(S).
8 These cost shares must

satisfy the budget balancedness constraint �S(S) = C(S).

We now explain why these cost sharing methods underlie the relevant strategyproof and budget

balanced mechanisms. Given a cost sharing method and a pro�le u of willingness to pay, consider

the (normal form) demand game where each user decides whether or not to request service (user

i's strategy choice is qi = 0 or qi = 1) and costs are shared among those who request service

according to the cost sharing method �. If it so happens that for all pro�les u the demand game

has a unique �-equilibrium (where �-equilibrium can be either a Nash equilibrium or a strong

equilibrium) then any �-equilibrium outcome de�nes a strategyproof revelation mechanism. That

is, this mechanism elicits ui, i 2 N , and implements the unique �-equilibrium outcome of the

reported demand game. This general fact is a classic result of the implementation literature that

hinges on the property of the preference domain known as monotonic closedness: see Dasgupta,

Hammond, and Maskin [1979].9 In the particular case of sharing the cost of a jointly produced

good, the general fact admits a converse statement. If we look for group strategyproof mechanisms

satisfying NS, VP, and CS, then the only way to obtain these is by way of a cross monotonic cost

sharing method of which the associated demand game has a unique equilibrium at all pro�les.10

In our problem, the property of cross monotonicity of the cost sharing method means that user

i's cost share cannot increase when the set of users expands11

5The pivotal mechanismassigns the net utility ui�xi = w�(N )�w�(N�i) to user i, where w�(S) = maxT�S [uT�
jT j

jNj
C(T )] (see, for example, Green and La�ont [1979]).
6Moreover, the pivotal mechanism fails VP.
7This route has been introduced much more recently: Shenker [1992,1995], Moulin and Shenker [1992], Moulin

[1994,1996], Deb and Razzolini [1995ab], Ohseto [1995], Serizawa [1994].
8In the language of cooperative game theory, a cost sharing method is a \value" de�ned for all reduced games

(S;C).
9In general, quasi-linear utilities do not yield a monotonically closed domain of individual preferences. In our

particular problem, given NS and VP, we can restrict agent i's consumption set to the union of (0; 0) (no service at
no cost) and the half-line (1; xi) (service at some nonnegative cost). On this choice set, quasi-linear utilities form
a monotonically closed domain.

10Two (technically very di�erent) formulations of this statement are in Shenker [1992,1995] (for the case where
the demand qi is a real number) and Moulin [1996] (for the case where qi is an integer, as we consider here).

11In some of the literature, the cross monotonicity property is known as population monotonicity, such as in
Sprumont [1990].
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S � T; i 2 S ) �i(T ) � �i(S) (3)

(recall that �i(S) is user i's cost share when S is the set of users who get access). Under cross

monotonicity, the demand game has nondecreasing best reply functions (if qi = 1 is a best reply

when a coalition S has access, then qi = 1 remains a best reply when any superset of S gets access)

hence the demand game possesses a Pareto superior Nash equilibrium. This equilibrium can be

computed by the simultaneous Cournot tatonnement starting at N ; that is to say the equilibrium

outcome ~S(�; u) is the limit of the following inclusion monotonic sequence:

S0 = N ; St+1 = fijui � �i(St)g (4)

It turns out that the outcome ~S(�; u) is the welfarewise-unique strong equilibrium (there may be

other equilibrium q's but they produce the same welfare) of the demand game (N; �; u), hence

the corresponding revelation mechanism (eliciting the pro�le u, then implementing ~S(�; u), and

sharing the cost C( ~S(�; u)) according to �) is strategyproof. It is group strategyproof as well. The

relevant characterization here is Theorem 2 inMoulin [1996], stating that every group strategyproof

revelation mechanism satisfying Budget Balance (costs are exactly covered), NS, VP, and CS

obtains as above as the strong equilibrium outcome of a cross monotonic cost sharing method

(this result is stated here as Theorem 1 in Section 4).

Proposition 1 (characterizing the MC mechanism) and Theorem 1 yield the �rst contribution of

this paper; together, they show that the combination of budget balance and strategyproofness

allows greater exibility to the designer and stronger incentive properties than the combination of

e�ciency and strategyproofness. The former combination, in particular, allows for more exibility

than the latter; in the former case, agent i's cost share can be any value between her stand alone

cost C(fig) and her incremental cost C(S)� C(S � i) (where S is the coalition of users actually

served), whereas in the latter case her cost share is entirely determined. See the discussion in

Section 4.

We now turn to the second contribution of the paper. Within the class of cross monotonic cost

sharing methods, we show that the Shapley value (Shapley [1953]) is characterized by the property

that the worst welfare loss of its associated revelation mechanism is minimal (Theorem 2 in Section

5). In other words, if we denote by (�; u) the welfare loss produced by a mechanism � at a pro�le

u, so

(�; u) = w(N;u)� (u ~S(�;u) � C( ~S(�; u))) (5)

then what we show is that the maximum of (�; u) over all u 2 <n
+
is smallest when the method �

is the Shapley value formula. Note that the Shapley value formula is cross monotonic when costs

are submodular (see Sprumont [1990]), so it is indeed in the class of methods we are considering.

Thus, somewhat surprisingly, this minimax property { minimizing the maximal welfare loss {

leads to a characterization of the Shapley value (over the class of submodular cost functions)

based exclusively on incentive compatibility and e�ciency considerations.12

12Another characterization of the Shapley value that uses no considerations of equity is based on its potential
property (i.e., the fact that cost shares are the derivatives of a potential function: Hart and Mas-Colell [1989]).
Actually, the proof of our Theorem 2 uses the potential property as well; see Section 5.
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Finally, we devote Sections 6 and 7 to a quantitative comparison of our two outstanding strate-

gyproof mechanisms, namely marginal contribution ((2)) and the mechanism associated with the

Shapley value. Both mechanisms have a shortfall { a budget de�cit for the marginal contribution

mechanism and an unrealized welfare gain for the mechanism based on the Shapley value { and

these can be quantitatively compared. Even though the nature of these shortfalls are quite dif-

ferent, the relative sizes the shortfalls incurred in our two mechanisms is still an interesting point

of comparison (as discussed in Section 1). We compute explicitly (Proposition 2) the maximal

welfare loss  of the Shapley value mechanism (namely the quantity  = supu2<n
+
(�; u) where

(�; u) is de�ned by (5) and � is taken to be the Shapley value mechanism) and the maximal

budget imbalance � of the marginal contribution mechanism, namely

� = sup
u2<n

+

[C(S�(u))� xN(u)] (6)

where x(u) is given by (2). The two formulae are, respectively,

� = [
X
i2N

C(N � i)]� (n� 1)C(N) (7)

 =

2
4X
S�N

(jSj � 1)!(jN j � jSj)!

jN j!
C(S)

3
5� C(N) (8)

For any cost function C,  is smaller than � if n = 2 or 3. For larger values of n, the comparison

can go either way but in many simple examples  exceeds �. In any event, the ratio 

�
is bounded

away from zero and in�nity independently of the submodular cost function C (Corollary 3 to

Proposition 2).

Section 7 is devoted to the special case of cost sharing of a tree network when cost is additive

along the links of the network and there are no congestion e�ects (i.e., the cost of each link is

independent of the number of users of the link). We compute � and  for a variety of simple tree

structures, and con�rm the �ndings of Section 6 that for small n,  is smaller than � but the

inequality is often reversed for larger values of n. However, certain tree structures yield  < � for

any size.

We conclude in Section 8 by raising some additional issues for future consideration. These issues

include the average case (rather than worst-case) analysis of shortfalls, other comparative aspects

such as the computational complexity of the mechanisms, and the consideration of supermodular

(rather than submodular) cost functions.

3 The Marginal Contribution Mechanism

Given a �xed cost function C, a revelation mechanism is a mapping M associating to all pro�les

u 2 <n
+
a coalition S(u) � N (equivalently expressed by the binary inclusion vector q(u) with

qi(u) = 1 for all i 2 S(u) and qi(u) = 0 for all i 62 S(u)) and a vector x(u) of nonnegative

9



monetary compensations. Budget balance is not required, so xN (u)� C(S(u)) can be nonzero at

some pro�les. In addition to the No Subsidy property (xi(u) � 0 for all i, all u) we now write the

other two properties introduced in Section 2 as follows:

� Voluntary Participation (VP): for all pro�les u, all agents i

uiqi(u)� xi(u) � 0

� Consumer Sovereignty (CS): for all i 2 N there is a value ui such that, for all u�i, S(u)

contains i (where u�i is the N � i projection of u).

We say that M is strategyproof if for all pro�les u, all agents i, and all \misreports" u0, we have

uiqi(u)� xi(u) � uiqi(u�i; u
0
i)� xi(u�i; u

0
i)

In order to de�ne our �rst mechanism, we state without proof two easy and important consequences

of the submodularity of C for the surplus function w(S; u) and the maximizing coalitions.

Fact 1: For any u, w(�; u) is supermodular: w(S; u)+w(T; u) � w(S [T; u)+w(S \T; u) for any

S; T � N .

Fact 2: If any two coalitions S and T are e�cient (i.e., uS � C(S) = uT � C(T ) = w(N;u))

then so is S [ T ; we denote by S�(u) the largest e�cient coalition at u, and denote by q�(u) the

corresponding inclusion vector.

The marginal contribution MC mechanism picks the coalition S(u) = S�(u) and charges the cost

shares x�(u) given by formula (2).

Proposition 1 Consider a strategyproof revelation mechanism M selecting an e�cient allocation

(not necessarily the largest) at all pro�les, meeting NS and VP. Then M is welfare equivalent to

MC: for all u, all i

uiqi(u)� xi(u) = uiq
�
i (u)� x�i (u)

Conversely, the MC mechanism meets NS and VP (as well as CS) and is strategyproof.

Proof: To check that MC satis�es NS, �rst pick a pro�le u and an agent i in an e�cient coalition,

i 2 S�(u); nonnegativity of x�i (u) amounts to w(N;u) � ui + w(N � i; u), which follows from

w(N;u) = uS�(u) � C(S�(u)) � ui + uS�(u)�i � C(S�(u)� i) � ui + w(N � i; u)

VP is a straightforward consequence of w(N � i; u) � w(N;u). CS follows from the fact (due to

submodularity) that, for a given i, if ui � C(fig) then uS+i�C(S+ i) � uS �C(S) for all S � N

and all u�i 2 <
n�1

+
.

Conversely, choose a mechanism M as in the premises of the �rst statement. By the standard

characterization result of CG mechanisms (e.g., Green and La�ont [1979] or Moulin [1988]) the
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property of strategyproofness combined with the e�ciency of S(u) implies the following form for

x(u):

xi(u) = uiqi(u)� (w(N;u)� hi(u�i))

Consider an arbitrary (N � i) pro�le u�i and denote by u0 its completion to an N -pro�le such

that u0i = 0. We must have xi(u
0) = 0 (by NS and VP, as noted at the beginning of Section 2)

and the above equation yields

hi(u�i) = w(N;u0) = w(N � i; u0) = w(N � i; u)

for any pro�le u with (N� i) projection u�i. Thus, the mechanismM takes the same form as MC,

except for the fact that S(u) can be any e�cient coalition (not necessarily the largest one as in

MC). In order to check that the two mechanisms are welfare equivalent, we need only to consider

an agent i in S�(u)� S(u) because both mechanisms give the precisely same allocation to every

agent in S(u) or outside of S�(u). For any agent i in S�(u)�S(u), we have w(N;u) = w(N � i; u)

hence she receives from the two mechanisms the (qi; xi) allocations of (0; 0) and (1; ui) respectively,

which are welfare equivalent. 2

Manipulating the marginal contribution mechanism

Strategyproofness does not prevent all forms of manipulation of the mechanism, and indeed there

are stronger forms of incentive compatibility to consider. Group strategyproofness expresses the

property that no coalition of users will �nd it pro�table to jointly misreport their willingness to

pay. To make this precise, �x any coalition T � N and any two pro�les u; u0 such that uj = u0j
for all j 62 T . Denote by (q; x) and (q0; x0) the allocations implemented at u and u0 respectively.

Group strategyproofness requires that if the inequality

uiq
0
i � x0i � uiqi � xi

holds for all i 2 T then it must be an equality for all i 2 T as well.

The marginal contribution method (MC) is not group strategyproof. To see this, consider a three

agent problem with a symmetric cost function

C(S) = c(jSj) where c(1) = 3; c(2) = 5; and c(3) = 6

The utility pro�le is not symmetric:

u1 = 4;u2 = u3 = 1:2

Straightforward computations yield S�(u) = f1g, w(N;u) = 1, w(N�1; u) = 0, and w(N�2; u) =

w(N � 3; u) = 1. Hence, MC yields the net utility (1; 0; 0). However, we see that the coalition

f2; 3g can successfully manipulate by reporting u0
2
= u0

3
= 4 because at pro�le u0 = (4; 4; 4) we

have S�(u0) = N , w(N;u0) = 6, and w(N�i; u0) = 3, so x0i = 4�(6�3) = 1. At this pro�le, agents

2; 3 end up with qi = 1, xi = 1, and a positive net utility; naturally, the outcome is ine�cient but

11



all agents (including agent 1) bene�t from the misreport by agents 2; 3. The banker is the loser,

as he must compensate for 3 units of budget de�cit.

In the above example the manipulation by coalition f23g requires reliable coordination between

these two users, because agent 1 would su�er a net loss if she were to report u0
2
= 4 while agent 3

is still reporting truthfully (he would end up paying 1:8 for the service).

However, there is a special kind of manipulation (again a violation of group strategyproofness)

that does not require any such coordination between agents and to which the MC mechanism is

always vulnerable. Fix a pro�le u (the true pro�le) and a willingness to pay u0i for agent i such

that ui < u0i. Denoting u0i = (ui; u
0
i) we observe the following facts:

13

Fact 1: S�(u) � S�(u0)

Fact 2: no agent j, j 6= i, is hurt: w(N;u) � w(N � j; u) � w(N;u0)� w(N � j; u0)

Fact 3: if i 2 S�(u) then S�(u0) = S�(u) and x�i (u) = x�i (u
0)

Facts 2 and 3 tell us that if an agent i is served at pro�le u, reporting a higher willingness to pay

is a matter of indi�erence to her, and it can never hurt any other agent. To see that in some cases

it can strictly help other agents, consider the following example with two agents:

C(1) = C(2) = 6 ; C(12) = 8 ; u1 = u2 = 5

Truthful reports yield S�(u) = f12g and cost shares x�
1
(u) = x�

2
(u) = 3. By raising his willingness

to pay to u0
1
= 7, agent 1 does not a�ect his allocation and reduces agent 2's cost share to

x�
2
(u0

1
; u2) = 2. Once again, the banker is the sucker!

Since MC is the unique CG mechanism that satis�es NS and VP, there is no way to prevent

manipulation by coalitions without abandoning the goal of e�ciency. We now turn to the class of

mechanisms that do just this.

4 Cross Monotonic Cost Sharing Methods

Recall that a cost sharing method is a mapping � associating to each coalition S a vector (�i(S); i 2

S) of nonnegative cost shares such that �S(S) = C(S). Assuming that the method � is cross

monotonic (property (3)) then the algorithm de�ned in formula (4) de�nes an inclusion monotonic

13To check Fact 1, denote S = S�(u), T = S�(u0) and compute

uS\T�C(S\T ) � uS�C(S)) C(S[T )�C(T ) � C(S)�C(S\T ) � uS�T � u0S�T ) u0T�C(T ) � u0S[T�C(S[T )

implying, by de�nition of T , S [ T = T . Similar reasoning establishes S�(u;N � j) � S�(u;N ) for all j. To prove
Fact 2, namely w(N � j; u0) � w(N � j; u) � w(N; u0) � w(N; u), we note that both sides of the inequality are
nonnegative and we distinguish three cases. If S�(N � j; u) contains i, so do S�(N; u), S�(N; u0), and S�(N � j; u0)
and both terms of the inequality equal u0

i
� ui. If S�(N � j; u0) does not contain i, neither does S�(N � j; u)

and the left hand term is zero. If i 62 S�(N � j; u) but i 2 S�(N � j; u0), call u�
i
the smallest value such that

S�(N � j; (u�i; u
�
i
)) contains i. Because S�(N; (u�i; u

�
i
)) contains i as well, the righthand term in the inequality is

at least u0i � u�i whereas the lefthand term equals u0i � u�i . The easy proof of Fact 3 is omitted.
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sequence in N , with limit ~S(�; u) (or ~S(u) if, from the context, the underlying cost sharing method

is unambiguous). We associate to the cost sharing method � the following revelation mechanism

denoted by RM(�):

S(u) = ~S(�; u); qi(u) = 1 and xi(u) = �i( ~S(�; u)) if i 2 ~S(�; u); qi(u) = 0 and xi(u) = 0 otherwise

(9)

The property of group strategyproofness has been de�ned in the previous section (after the proof

of Proposition 1).

Theorem 1 For any cross monotonic cost sharing method �, the mechanism RM(�) (de�ned

by (9)) is budget balanced, meets NS, VP, CS, and is group strategyproof. Conversely, pick a

revelation mechanism M satisfying budget balance, NS, VP, CS, and group strategyproofness.

Then there exists a cross monotonic cost sharing method � such that RM(�) is welfare equivalent

to M .

The proposition is identical to Theorem 2 in Moulin [1996].14 In the special case of an excludable

public good (C(S) = 1 for all nonempty S), Deb and Razzolini [1995a,b] and Ohseto [1995] provide

similar yet di�erent characterization results.

We do not provide a proof of the \converse" statement in Proposition 1; however, the \direct"

statement is easy to prove and we repeat its proof here.

Proof of direct portion of Theorem 1: We �x a cross monotonic method � and check that

RM(�) is group stategyproof (all other statements are trivial).

Let u be the (true) pro�le of willingness to pay and S = ~S(�; u). Assume a certain coalition T

manipulates at u by u0 (where uj = u0j for all j 62 T ) and set S0 = ~S(�; u0). Finally, set S00 = S[S0

and denote by q (respectively, q0 and q00) the vector of 0 and 1 corresponding to S (respectively,

S0 and S00). Check �rst

for all i 2 T : uiq
00
i � �i(S

00) � uiq
0
i � �i(S

0) (10)

This is clear if i 62 S00 (implying i 62 S0). If i 2 S0 this follows from S0
� S00 and cross monotonicity.

Lastly if i 2 S00
� S0 (implying i 2 S) then ui � �i(S) = 0 because the manipulation property

requires uiq
0
i � �i(S

0) � uiqi � �i(S) and so, by cross monotonicity, ui � �i(S
00) � 0 as desired.

Combined with the manipulation assumption, formula (10) implies

for all i 2 T : uiq
00
i � �i(S

00) � uiqi � �i(S) (11)

with at least one strict inequality. We claim that (11) holds true as well for i 62 T . This is clear

if i 2 S (implying i 2 S00) by cross monotonicity, or if i 62 S00 (in which case both sides of the

14In that paper, individual preferences are \classical", namely monotonic (strictly in money), continuous and
convex; this domain is generally larger than that allowed by quasi-linear utilities. However, in our problem, NS and
VP imply that xi = 0 if qi = 0 hence agent i's consumption set is the union of (0; 0) (qi = 0, xi = 0) and of the half
line (1; xi), xi � 0. On this set, a classical preference is entirely described by a simple number ui (the willingness
to pay) such that (0; 0) is indi�erent to (1; ui). Hence the classical domain and that of preferences represented by
quasi-linear utilities coincide.
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inequality are zero); if i 2 S00
� S (implying i 2 S0) observe that ui � �i(S

0) � 0 (because q0 is

Nash equilibrium at u0 and u0i = ui) so by cross monotonicity ui � �i(S
00) � 0 as desired.

We have proven that (11) holds for all i with at least one strict inequality. Therefore S00
� S is

nonempty (or (11) would be an equality for all i) and there is a largest integer t such that S00
� St

(where the sequence St is derived by (4) at u). Pick an agent i in S00 \ (St � St+1); we have

ui < �i(St) � �i(S
00)) uiq

00
i � �i(S

00) < 0

But this contradicts (11) as q is a Nash equilibrium at u. 2

The family of revelation mechanisms uncovered by Theorem 1 leaves a fair degree of exibility to

the mechanism designer. Suppose �rst the agents have equal right to the use of the technology

C, so that the property \equal treatment of equals" is deemed desirable: if the function C is

symmetrical in i and j (i.e., C(S + i) = C(S + j) for all S � N � fi; jg), then the cost shares

of agents i and j should be symmetrical as well.15 Then the designer can choose from a variety

of formulae, including the Shapley value (Shapley [1953])16, the egalitarian solution (Dutta and

Ray [1989])17, convex combinations of these, and more.18 For instance, in the case of two users

N = f12g, these two values are

Shapley �1(12) =
1

2
(C(12) + C(1)� C(2)); �2(f1; 2g) =

1

2
(C(12) + C(2)� C(1))

Egalitarian �1(12) = medfC(12)

2
; C(1); C(12)� C(2)g; �2(12) = medfC(12)

2
; C(2); C(12)� C(1)g

(where medf�g is the median operator).

Another possibility is that the users have unequal claims on the technology C (perhaps because

of seniority, earlier contributions to its development, and so on) and that the designer wishes to

choose a cost sharing formula that fairly reects this fact. For simplicity, suppose that the users

are ordered as f1; 2; : : : ; ng and that their claims are lexicographic: agent 1's claim outweighs any

other claim; agent 2's claim outweighs those of any agent 3; 4; : : : ; n, and so on. A consequence of

Theorem 1 is that this hierarchy of claims determines entirely the choice of our designer (within the

class de�ned by NS, VP, CS, and group strategyproofness). Indeed, in any cross monotonic cost

sharing method, agent 1 must pay out at least C(S)�C(S�1) where S is the coalition of users who

get the service; this follows from �S�1(S) � �S�1(S � 1) = C(S � 1) and �1(S) = C(S)� �S�1(S).

Thus, agent 1's superior claim entitles him to this minimal cost share C(S)�C(S� 1). Similarly,

agent 2's cost share must be at least C(S�1)�C(S�f1; 2g) (by repeating the above argument),

and so on. The resulting cost sharing method is the familiar hierarchical stand alone method

(often called the marginal contribution method) where the agent i with the largest index in S

(i.e., the agent with the least claim to the resources) pays her stand alone cost C(fig), the agent

15Note that is is a strong version of the general idea that cost shares should reect the inherent symmetries of
the cost structure.

16For a proof that this value is cross monotonic when C is submodular, see, for example, Sprumont [1990].
17The egalitarian solution of the cooperative game (N; c) picks a pro�le of cost shares x� within the stand alone

core of this game (x�
S
� C(S)).

18See Sprumont [1990] for a systematic discussion of the cross monotonicity property. Note that the nucleolus
(Schmeidler [1969]), another familiar value for cooperative games, is not cross monotonic (see Somnez [1993]).
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with the next largest index j pays C(fijg)�C(fjg), and so on. This method is cross monotonic

given a submodular cost function (recall that the Shapley value is but the arithmetic average of

such methods over all possible ordering of N).

5 The Shapley Value Mechanism

We turn to the outstanding position of the Shapley value within the class of cross monotonic cost

sharing methods. Given such a method �, we denote by (�) the maximal welfare loss of the

mechanism RM(�) de�ned by (9);

(�) = sup
u2<n

+

(�; u) = sup
u2<n

+

[w(N;u)� (u ~S(�;u) � C( ~S(�; u)))]

We write as �� the Shapley value cost sharing method

��i (S) =
X

T�S�i

jT j!(jSj � jT j � 1)!

jSj!
[C(T [ i)� C(T )] for all S and i 2 S

We refer to the corresponding revelation mechanism RM(��) as SH.

Theorem 2 19 Among all mechanisms RM(�) derived from cross monotonic cost sharing methods,

SH has the uniquely smallest maximal e�ciency loss:

(��) < (�) for all � 6= ��

Proof: The proof is divided into 5 steps. In the �rst three steps we assume a given cross monotonic

cost sharing method � and a utility pro�le u. We write S = ~S(�; u) and T = S�(u).

Step 1: S � T

Assume, to the contrary, that S � T is nonempty. Observe that for all i 2 S, we have ui � �i(S)

(by construction of ~S as in (4)). Hence, we compute:

(uS[T � C(S [ T ))� (uT � C(T )) = uS�T + C(T )� C(S [ T ) � �S�T (S) + C(T )� �S[T (S [ T )

= (�S�T (S)� �S�T (S [ T )) + (C(T )� �T (S [ T )) � 0

But this is a contradiction because T is the largest e�cient coalition.

The inclusion just established implies in particular the following expression for the e�ciency loss:

(�; u) = w(N;u) � w( ~S(�; u); u)

19Monderer and Shapley [1993] establish a seemingly unrelated property of the demand game associated with
an arbitrary cost function C (not necessarily submodular, not even nondecreasing) and an arbitrary cost sharing
method. They show that the demand game is a \potential game" if and only if the method is the Shapley value.
Interestingly, our proof relies on the representation of the Shapley value by a potential function due to Hart and
Mas-Colell [1989].
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To see this, apply Step 1 to the restriction of the game to ~S(�; u).

Step 2: For all R � N , R \ S = ;, there exists i 2 R such that ui < �i(S [R)

This follows from the de�nition of S; if we have for all i 2 R, �i(S[R) � ui then every coalition St

in the sequence de�ned by (4) must contain S[R (by cross monotonicity and an obvious induction

argument), hence a contradiction.

Step 3: Bounding (�; u)

We represent an ordering of N = f1; 2; 3; : : : ; ng by a permutation � of N , with the interpretation

that �(1) is the �rst in the ordering, �(2) is second, and so forth. We write E(k; �) = fij��1(i) �

kg the set of users ranked k or higher by the permutation �. We set:

�(�) = max
�

 
nX

i=1

��(i)(E(i; �))

!
� C(N) (12)

where the maximum is taken over all permutations of N .

We now show that (�; u) � �(�) for the arbitrary pro�le u �xed at the beginning of the proof. If

S = T , we have (�; u) = 0 and the inequality follows from the nonnegativity of � (a consequence

of cross monotonicity). From now on, assume S 6= T and so, by Step 1, we must have S � T .

We label (arbitrarily) the agents in N � T as f1; 2; : : : ; kg and use cross monotonicity to see that

C(N)� C(T ) � �N�T (N) and:

C(N)� C(T ) �
kX

i=1

�i(N � f1; : : : ; i� 1g)

Next we label the elements in T �S such that T �S = fk+1; k+2; : : : ; k+ k0g. We apply Step 2

repeatedly, �rst to R1 = T�S to pick an agent labeled k+1 in R1, then to R2 = T�(S[fk+1g) to

pick an agent k+2 in R2, and so on, with agent k+i selected in Ri = T�(S[fk+1; : : : ; k+i�1g)

such that

uk+1 < �k+1(T ); : : : ; uk+i < �k+i(T � fk + 1; : : : ; k + i� 1g); : : : ; uk+k0 < �k+k0(S [ fk + k0g)

Finally, we label (arbitrarily) the agents in S as fk + k0 + 1; : : : ; ng and repeatedly use cross

monotonicity to show:

C(S) �
nX

i=k+k0+1

�i(S � fk + k0 + 1; : : : ; i� 1g)

Summing the above inequalities yields

C(N)� C(T ) + uT�S + C(S) �
nX

i=1

��(i)(E(i; �))

where � is the ordering �(i) = i, i = 1; : : : ; n. The lefthand term in the inequality above equals

(uT � C(T ))� (uS � C(S)) + C(N) = (�; u) + C(N)
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hence the desired conclusion (�; u) � �(�) follows.

Step 4: supu2<n
+
(�; u) = �(�)

In view of Step 3, it is enough to show that for any ordering � of N , we have

sup
u2<n

+

(�; u) � �(�; �) =
nX

i=1

�i(E(i; �))� C(N)

We pick an arbitrary ordering �, denoted for simplicity �(i) = i, and a number �, 0 < � < 1.

Consider the utility pro�le

ui = (1� �)�i(E(i; �)) for all i (13)

Denote by St the inclusion monotonic sequence (4). Note that ~S(�; u) is typically empty; it will

be empty if �i(S) is positive for all S. However, if some of the cost shares �i(S) are zero, we may

have ~S(�; u) 6= ;.

We now prove (�; u) � �(�; �)(1� �)� �C(N). As the choice of � and � were arbitrary this will

conclude the proof of Step 4. We shall use the following fact: for all S, all i 2 S

�i(S) = 0 ) [C(S) = C(S � i) and �j(S) = �j(S � i) for all j 2 S � i] (14)

To see this, sum up the inequalities �j(S) � �j(S � i) and invoke the monotonicity of the cost

function.

If ~S = ; we have

(�; u) = w(N;u) � uN � C(N) = �(�; �)(1� �)� �C(N)

and so we are done. However, as we noted above, ~S need not be empty. We now show that this

does not alter our conclusion. De�ne A = fi 2 N ji 2 Sig, where the Si are de�ned in (4). If

A = ;, then ~S = ; and we are done. Suppose A 6= ; and let i be its smallest element. For all

j smaller than i we have j 62 Sj hence j 62 Si�1; thus, Si�1 � E(i; �) and the assumption i 2 Si

implies

(1� �)�i(E(i; �)) = ui � �i(Si�1) � �i(E(i; �))

Hence ui = 0 and �i(E(i; �)) = 0. Now we can \eliminate" user i and consider the reduced problem

over N � i with the ordering induced by �; let ��i denote this induced ordering. In view of (14),

we have �(N; �) = �(N � i; �) (noting �i(N) must be zero, hence C(N) = C(N � i)). Similarly,

denoting by u�i the N � i pro�le obtained by removing ui, we have, by (14):

for all j < i; �i(E(j; �)) = 0) �j(E(j; �)) = �j(E(j; ��i))

where E(j; ��i) are the successors of j in N � i. Therefore, the pro�le u�i is de�ned in exactly

the same way (namely by property (13)) in the reduced problem as u was in the original problem.

Consider again the sequence St(�; u) de�ned in (4). Dropping the dependence on � and u tem-

porarily, we denote by St(T ) the t'th term in the sequence de�ned by the program (4) with the

starting point S0(T ) = T . Note that in general T � T 0 ) St(T ) � St(T
0); thus, denoting the limit

of these sequences by ~S(T 0) and ~S(T ), we have ~S(T 0) 6= ~S(T ), T 0 � T \ ~S(T 0) 6= ;.
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Applying this, and (14), to the two sequences St(N) and St(N � i), we see that either ~S(N) =
~S(N � i) or ~S(N) = ~S(N � i) [ fig. Therefore

w(N;u) = w(N � i; u�i);w( ~S(�; u); u) = w( ~S(�; u�i); u�i)

implying (�; u) = (�; u�i). We can now repeat the above argument for the reduced problem,

and use an obvious induction argument to arrive at a reduced problem where indeed A = ;. This

completes the proof of Step 4.

Step 5:

We have proven (�) = �(�). It remains to show the inequality �(��) < �(�) when �� is the Shapley

value and � is another cost sharing method. First, one checks easily:

1

n!

X
�

�(�; �) =

0
@X

S�N

(jSj � 1)!(n� jSj)!

n!
C(S)

1
A� C(N) (15)

where the lefthand sum is taken over all permutations of N . Note that the righthand sum is the

potential function P (N) of Hart and Mas-Colell [1989] who proved that the Shapley value method

�� can be written as:

��i (S) = P (S)� P (S � i) for all i; all S; with P (S) =
X
T�S

(jT j � 1)!(jSj � jT j)!

jSj!
C(T ) (16)

We show below, by induction on jN j, that the Shapley value is characterized by the property that

�(��; �) is independent of �. In view of (15) this will imply the desired conclusion, namely

�(��) = P (N) � C(N) and �(�) > P (N)� C(N) for all �; � 6= ��

This claim is obvious for n = 1 (there is only one cost sharing method) and very easy to check for

n = 2. Assume it holds for all N 0 such that jN 0j � n � 1 and consider N such that jN j = n. Fix

an ordering � such that �(1) = i, and denote by ��i the induced ordering on N � i.

Check �rst that �(��; �) is independent of � by computing:

�(��; �) = ��i (N) + �(��; ��i) + (C(N � i)� C(N))

= (P (N) � P (N � i)) + (P (N � i)� C(N � i)) + (C(N � i)�C(N)) = P (N)� C(N)

Conversely, assume that � is a method such that �(�; �) is independent of �. Check that �(�; ��i)

is independent of ��i (this is obvious from the de�nition of �(�; �)), therefore, for any given � such

that �(1) = i, we compute:

P (N)� C(N) = �(�; �) = �i(N) + �(�; ��i) + (C(N � i)� C(N)) = �i(N) + P (N � i)�C(N)

so �i(N) = P (N) � P (N � i). The conclusion � = �� then follows from the potential formula for

the Shapley value (16). 2
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6 The Maximal Losses of MC and SH

The maximal budget de�cit of MC, de�ned by (6), can be computed with the help of (2) which

de�nes the cost allocations of MC:

� = sup
u2<n

+

"
(n� 1)w(N;u)�

X
i2N

w(N � i; u)

#
(17)

On the other hand, the maximal welfare loss of the Shapley value mechanism SH is de�ned as

 = sup
u2<n

+

h
w(N;u)� (u ~S(��;u) � C( ~S(��; u)))

i

where ~S(��; u) is the equilibrium demand computed according to (4).

Proposition 2 For any nondecreasing and submodular cost function C such that C(;) = 0, we

have:

� =

 X
i2N

C(N � i)

!
� (n� 1)C(N) (18)

 = P (N) � C(N) =

0
@X

S�N

(jSj � 1)!(n� jSj)!

n!
C(S)

1
A� C(N) (19)

Proof: The formula (19) giving  has been established in Step 5 of the proof of Theorem 2. We now

prove (18). Check �rst a consequence of submodularity: the quantity
P

i2S C(S� i)� (n�1)C(S)

is nondecreasing in S (using the convention that S � i = S if i 62 S). We omit the straightforward

proof. Then �x a pro�le u and set S = S�(u). Compute

(n� 1)w(N;u) �
X
i2N

w(N � i; u) � (n� 1)(uS � C(S))�
X
i2N

(uS�i � C(S � i))

=
X
i2N

C(S � i)� (n� 1)C(S) �
X
i2N

C(N � i)� (n� 1)C(N)

In view of (17) this shows � �
P

i2N C(N � i) � (n � 1)C(N). The converse inequality follows

by choosing a pro�le with each ui large enough so that S�(u) = N and S�(u�i) = N � i for all i.

This completes the proof. 2

We derive four corollaries of Proposition 2. Corollary 1 says that with 2 or 3 users,  never

exceeds �; SH has a smaller shortfall than MC for these small systems. Corollary 2 gives an

intuitive formula for  and � in the case of symmetric cost functions. Corollary 3 computes the

largest and smallest ratios �


; while the maximal budget imbalance of MC can be as much as n

times the maximal welfare loss of SH, the latter can only be as much as log n times the former.

Finally, Corollary 4 computes the worst ratio of loss to total cost, for both mechanisms; it can be

as large as log n for SH but never exceeds 1 for MC.
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Corollary 1 In two agent problems (jN j = 2), we have

 =
�

2
=

1

2
(C(1) + C(2)� C(12))

In three agent problems (jN j = 3), we have

 =
s1

3
+
s2

6
�

2s3
3
� s2 � 2s3 = � (20)

where st =
P

S�N ;jSj=tC(S)

Corollary 2 If the cost function takes the form C(S) = c(jSj) where c is concave on f0; 1; 2; : : : ; ng

and c(0) = 0, then
�

n
=

 
c(n)

n
� (c(n)� c(n� 1))

!
(21)



n
=

1

n

 
nX

i=1

c(i)

i

!
�

c(n)

n
(22)

Corollary 3 Given n, the number of users, we have

sup
C

�(C)

(C)
= n ; sup

C

(C)

�(C)
= f(n)

where the supremum is taken over all nondecreasing submodular cost functions such that C(;) = 0,

where we use the convention that 0

0
= 1, and where f is the function f(n) �

Pn
i=2

1

i
. In particular,

(C) = 0 if and only if �(C) = 0.

Corollary 4 Given n, the number of users, we have

sup
C

�(C)

C(N)
= 1 ; sup

C

(C)

C(N)
= f(n)

(with the same notational conventions as in Corollary 3).

Proof of the Corollaries:

Corollary 1: The formulae for �;  for the cases n = 2; 3 follow at once from Proposition 2.

Inequality (20) amounts to 2s1 + 8s3 � 5s2 and follows from the combination of s2 �
3

2
s3 +

1

2
s1

and s1 � s2 (both of which are implied by submodularity).

Corollary 2: This follows directly from the formulae for � and  (equations (18) and (19) respec-

tively).

Corollary 3: Note that both �(C) and (C) are symmetrical and additive functions of C; if C�

obtains from C by permuting the agents according to �, we have �(C�) = �(C) and (C�) = (C).
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Therefore, if ~C = 1

n!
��C

� is the cost function obtained by symmetrizing C, we have
�( ~C)

( ~C)
=

�(C)

(C)
as

well. Thus the suprema in the statement of Corollary 3 can be computed by restricting attention

to symmetric cost functions where C(S) = c(jSj) as in Corollary 2. In view of Corollary 2 we are

left with the task of computing the bounds of the ratio

Pn
i=1

c(i)

i
� c(n)

nc(n� 1) � (n � 1)c(n)
(23)

over all nondecreasing concave functions c on f0; 1; : : : ; ng such that c(0) = 0.

Fixing c(n) and c(n � 1) such that the denominator in (23) is positive, we reach the supremum

of (23) by taking c(i) = c(n) � (n � i)(c(n) � c(n � 1)) for i = 1; : : : ; n � 2. Then the ratio

(23) is computed to be f(n). On the other hand, the minimum of (23) is reached by taking

c(i) = i
n�1

c(n� 1), i = 1; : : : ; n� 2, and for this choice the ratio (23) is computed to be 1

n
.

To conclude the proof it remains to observe that the function c is linear if and only if �( ~C) = 0,

and if and only if ( ~C) = 0, where ~C is the symmetrized form of C.

Corollary 4: To prove that supC
�(C)

C(N)
= 1, note that �(C) � C(N) holds by monotonicity of C.

Then consider the cost function C�(S) = 1 for all S 6= ;, and observe that �(C�) = C�(N). To

prove that supC
(C)

C(N)
= f(n), note that (C) � f(n)C(N) follows from the upper bounds on (C)

�(C)

and �(C)

C(N)
computed above. Checking the inequality (C�) = f(n)C�(N) is straightforward.

7 Application to Cost Allocation on a Tree Network

A number of cost allocation problems in the transportation and communication industries are

commonly modeled with the help of a tree network (Sharkey [1995] provides an excellent survey

of the relevant game theoretic literature). Some number of users are located at the nodes of a

�xed distribution tree. In the communications context, which we will use as our guide in this

section, the origin of this tree is interpreted as a source sending a signal to the users; access to

the network represents the ability to read the signal, be it cable TV, or Internet services, or some

other medium.

In the most common model, the cost of using a given link (an edge connecting two nodes of the

tree) is independent of the number of users sharing this link,20 and the total cost of operating a

certain tree is the sum of the cost of its links. Therefore, the minimal cost of serving an arbitrary

coalition of users is a submodular function because the addition of new users reduces (or leaves

unchanged) the set of links needed to graft a given user onto the distribution tree.21

20This represents an assumption of no congestion e�ects. This is an accurate model when looking at multicast
transmissions (Herzog et al. [1995]), the construction of networks (where the expense is in laying the �ber, not in
the amount of �ber), and many other examples. It is not a good model for congestion-prone facilities.

21We do not consider the option of changing the design of the distribution tree when members are not included;
that is, denying service to a member never results in utilizing an additional link. In our model, the set of links
needed to service a particular agent is �xed, and the inclusion of other members only a�ects what other links are
needed. Minimal cost spanning trees are an example of a network where this condition fails (e.g., adding a member

21
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Figure 1: Three kinds of trees, each illustrated with n = 4.

We now compare the maximal losses � and  of our two mechanisms MC and SH for a number of

simple spanning trees. A general formula for � obtains at once. Consider a tree T described by the

function T (N), where T (S) is the set of links needed to service the coalition S. Let D be the set

of links followed by only one user; D = [i2N (T (N)�T (N� i)). Then we have � = C(T )�C(D).

This general formula is applied in the next result to three simple kinds of trees. The function

f(n) =
Pn

i=2

1

i
introduced in the previous section plays a central role in the computation of  in

these simple trees. Note that f(n)

logn
converges to 1 as n grows large, and that the �rst ten values of

f are as follows:

n 2 3 4 5 6 7 8 9 10

f(n) .5 .833 1.083 1.283 1.450 1.593 1.718 1.829 1.929

Table 1: The value of f(n) for n � 10 (three signi�cant �gures).

Consider three trees depicted in Figure 7, a \bush" tree, a \linear" tree, and a \binary" tree.

Proposition 3 For the bush tree we have

� = c0 ;  = f(n)c0

For the linear tree we have

� =
n�1X
i=1

ci ;  =
nX
i=2

f(i)cn�i+1

For the binary tree of depth l, so n = 2l, we have

� =
l�1X
k=0

2kck ;  =
l�1X
k=0

2kf(2l�k)ck

Proof: To prove this, we need only check the computations of . Recall from Step 5 in the proof

of Theorem 2 that for an arbitrary ordering � of N we have

 =
nX

i=1

��(i)(E(i; �))� C(N) (24)

may result in some link no longer being needed) and may result in a non submodular cost function: see Sharkey
[1995] page 724.
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Pick an arbitrary link of the tree from node a to node b and an ordering of N in which all the

descendants of b appear last. The cost of the link ab is shared between all the descendants of b; if

there are p such descendants that cost appears with the factor f(p) in the righthand sum of (24).

This technique yields easily the formulae for  in Proposition 3. 2

Note that the argument in the proof also gives more general formulae for . Consider a tree with

l levels and a splitting factor of ki at level i and link cost ci.

 =
l�1X
i=1

ci

0
@ iY

j=1

kj

1
A f(

lY
j=i+1

kj)

For this same example, we have

� =
l�1X
i=1

Ci

0
@ iY

j=1

kj

1
A = C(N)� nCl

Note that the maximal pro�t (i.e., minimal revenue imbalance) arises when l = 1 and k1 = n.

Thus, maximizing pro�t leads to no sharing between agents, because sharing makes it harder to

extract revenue from the agents.

Proposition 3 con�rms the general fact that for small numbers of users  is smaller than �, but

the comparison is reversed as the number of users grows. For instance, in the bush tree, the linear

tree, and the binary tree with constant link cost, one checks that 

�
increases with n; this ratio

exceeds 1 for n � 4 in the case of the bush tree, for n � 6 in the linear and binary trees. In the

bush and linear trees, the ratio grows asymptotically as log n; in the binary tree the ratio goes to

a constant � 1:118.

8 Concluding Comments

We now briey address two additional aspects of our problem.

8.1 Supermodular Cost Functions

Another relevant context is when the cost function is supermodular rather than submodular.

This occurs, for example, in tree networks with concave congestion (i.e., the cost of the link

is a concave function of the number of users \downstream"). For supermodular costs, the MC

mechanism remains the canonical CG mechanism, as Proposition 1 and its proof remain valid

word for word. However, the computation of its maximal budget imbalance becomes hard (and

the imbalance can be a surplus or a de�cit). On the other hand, the demand game associated

with the Shapley value cost sharing method does not, in general, have a unique strong equilibrium

(the best reply functions are decreasing, so multiple noncomparable equilibria are possible), hence

it does not result in a strategyproof revelation mechanism. The (small) class of cost sharing

methods that do result in a strategyproof mechanisms (because their demand games always have
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a unique strong equilibrium) has been characterized in Moulin [1996]. It reduces essentially to

the family of hierarchical stand alone methods discussed in Section 4, where users pay their

incremental costs according to a �xed ordering of N : �i(N) = C(E(�; i)) � C(E(�; i � 1)) for

some ordering �. The criterion of minimizing the maximal welfare loss does not seem to select

a clearly identi�able method in this family. Thus, in the supermodular case, the combination

of group strategyproofness and budget balance proscribes equal treatment of equals, whereas

the combination of strategyproofness and e�ciency (as in the submodular case) prescribes equal

treatment of equals. While the former (group strategyproofness and budget balance) still has

superior incentive properties in the supermodular case, it no longer has claim to greater exibility.

8.2 Incentives for Adopting Alternative Technologies

The shortfalls in the two candidate mechanisms, SH and MC, lead to interesting incentive questions

in the choice of technology. Assume that the facility has committed to using either MC or SH.

What happens when a facility currently using a technology with cost function C is given the

chance to adopt a better technology ~C, where ~C(S) � C(S) for all S � N .

Consider the case where the cost functions C and ~C are both symmetric. Then C(S) = c(jSj) and
~C(S) = ~c(jSj) as in Corollary 2.

In the SH mechanism, the budget is always balanced, and so the comparison between technologies

rests strictly on the welfare comparison. The Shapley cost shares take the simple form ��i (S) =
c(jSj)

jSj

(and ~��i (S) = ~c(jSj)

jSj
). For any given utility pro�le u, the resulting equilibrium with the new

technology will have higher (or equal) welfare compared with the welfare associated with the old

technology because all cost shares are lower with the new technology, and so the newer equilibrium

will be at least as large (and so have at least as great total willingness-to-pay, and will have lower

costs). Thus, with the SH mechanisms, the incentives point unambiguously towards adoption of

cheaper technologies (in the symmetric case).

In the MC mechanism, the answer is less clear. For any given utility pro�le u, the welfare is at least

as great under the new technology. However, the budget imbalance may be larger with the new

technology. Consider, for example, the case where ~c(s) = c(s) for all s < n and ~c(n) = ~c(n� 1) =

c(n� 1). The revenue R raised by the MC mechanism is given by R = jS�j(c(jS�j)� c(jS�j � 1))

(where S� is the e�cient coalition). Then, for any u such that S� = N in the old technology, the

budget loss (cost minus revenue) is higher under the new technology, with the di�erence being

(1 � n)(c(n) � c(n � 1)). When looking only at the loss at a given utility pro�le, this perverse

incentive to not adopt cheaper technologies can even occur when the new technology has merely

scaled down costs, ~c(s) = �c(s) for some 0 < � < 1. However, if one compares instead the worst

case budget imbalance for a given technology, then this perverse incentive does not occur when

the costs are simply scaled down (since � scales with C) but can occur when the functional form

of ~c exhibits much smaller marginal costs (proportional to the total cost) of including additional

users. Thus, technologies such as multicast transmissions which do not change the stand alone

costs but rather increase the extent to which the resource is shared, may lead to increased rather

than decreased losses.
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